1	SARS-CoV-2 Spike Protein Interacts with
2	Multiple Innate Immune Receptors
2	White pre innate innitiale Receptors
4	Authors:
5	Chao Gao ¹ , Junwei Zeng ¹ , Nan Jia ¹ , Kathrin Stavenhagen ¹ , Yasuyuki Matsumoto ¹ , Hua
6	Zhang ² , Jiang Li ³ , Adam J. Hume ^{4,5} , Elke Mühlberger ^{4,5} , Irma van Die ⁶ , Julian Kwan ⁷ , Kelan
7	Tantisira ³ , Andrew Emili ⁷ , and Richard D. Cummings ^{1*}
8	
9	Affiliations:
10	¹ Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School,
11	Boston, MA, USA.
12	² Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center,
13	New York, NY, USA
14	³ Channing Division of Network Medicine, Department of Medicine, Brigham and Women's
15	Hospital, Harvard Medical School, Boston, MA, USA
16	⁴ Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
17	⁵ National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
18	⁶ Department of Molecular Cell Biology and Immunology, VU University Medical Center,
19	Amsterdam, The Netherlands
20	⁷ Center for Network Systems Biology, Departments of Biochemistry and Biology, Boston
21	University, Boston, MA, 02118 USA
22	
23	Email Addresses:
24	Chao Gao <u>cgao3@bidmc.harvard.edu</u>
25	Junwei Zeng jzeng1@bidmc.harvard.edu
26	Nan Jia <u>njia@bidmc.harvard.edu</u>
27	Kathrin Stavenhagen <u>kstavenh@bidmc.harvard.edu</u>
28	Yasuyuki Matsumoto <u>ymatsumo@bidmc.harvard.edu</u>
29	Hua Zhang Hua.Zhang@nyulangone.org
30	Jiang Li <u>rejia@channing.harvard.edu</u>
31	Adam J. Hume <u>hume@bu.edu</u>
32	Elke Mühlberger <u>muehlber@bu.edu</u>
33	Irma van Die <u>irma.van.die@gmail.com</u>
34	Julian Kwan jhkwan@bu.edu
35	Kelan Tantisira <u>kelan.tantisira@channing.harvard.edu</u>
36	Andrew Emili <u>aemili@bu.edu</u>
37	

- 38 * Corresponding author:
- 39 Richard D. Cummings, <u>rcummin1@bidmc.harvard.edu</u>
- 40

41 Abstract:

- 42 The spike (S) glycoprotein in the envelope of SARS-CoV-2 is densely glycosylated but the
- 43 functions of its glycosylation are unknown. Here we demonstrate that S is recognized in a
- 44 glycan-dependent manner by multiple innate immune receptors including the mannose
- 45 receptor MR/CD206, DC-SIGN/CD209, L-SIGN/CD209L, and MGL/CLEC10A/CD301.
- 46 Single-cell RNA sequencing analyses indicate that such receptors are highly expressed in
- 47 innate immune cells in tissues susceptible to SARS-CoV-2 infection. Binding of the above
- 48 receptors to S is characterized by affinities in the picomolar range and consistent with S
- 49 glycosylation analysis demonstrating a variety of N- and O-glycans as receptor ligands.
- 50 These results indicate multiple routes for SARS-CoV-2 to interact with human cells and
- 51 suggest alternative strategies for therapeutic intervention. (116 words)
- 52

53 Introduction:

- 54 SARS-CoV-2 is a positive-sense RNA enveloped virus characterized by a surface Spike (S)
- 55 glycoprotein¹. During host cell invasion, S binds to receptors on cell membranes, such as
- angiotensin-converting enzyme 2 $(ACE2)^{1, 2, 3}$. However, the nature and function of the S
- 57 glycosylation is not fully understood.
- 58 Densely glycosylated with multiple Asn-linked (N-glycans) and a few Ser/Thr-linked (O-
- 59 glycans)^{4, 5}, the S protein of SARS-CoV-2 potentially presents ligands for a variety of innate
- 60 immune receptors, including C-type lectin receptors (CLRs), that are known to bind specific
- 61 glycans mostly in a Ca²⁺-dependent manner^{6, 7}. CLRs such as DC-SIGN/CD209, L-
- 62 SIGN/CD209L/CLEC4M, mannose receptor/MR/MRC1/CD206, MGL/CLEC10A/CD301,
- and Dectin-2/CLEC6A, are highly expressed within the human immune system including
- 64 monocytes, dendritic cells, and macrophages, functioning as the first-line of defense against
- 65 invading viruses and pathogens^{8,9}. As known pattern-recognition receptors, CLRs, especially
- 66 DC-SIGN, can direct host immune responses against numerous pathogens in a glycan-
- 67 specific manner by modulating Toll-like receptor-induced activation ¹⁰.
- 68 Evidence implicates innate immune cells in the pathogenesis of SARS-CoV-2. Over 80% of
- 69 patients with SARS-CoV-2 infection present with lymphopenia and an increased neutrophil-
- 70 lymphocyte ratio¹¹. Patients with severe COVID-19 exhibit hyperactive macrophages in the
- 71 bronchoalveolar lavage fluid (BALF) and oropharyngeal swab¹². Likewise, increased
- 72 infiltration and activation of macrophages is observed in biopsy or autopsy specimens from
- 73 COVID-19 patients¹³. Previous studies of the closely-related SARS-CoV demonstrated that
- 74 primary human monocytes and dendritic cells can be infected^{14, 15}, and SARS-CoV S can

⁷⁵ bind DC-SIGN and L-SIGN^{16, 17, 18, 19}. Eight glycosylation sites of SARS-CoV S were

⁷⁶ identified to be involved in their interactions^{20, 21}, among which six are conserved in SARS-

77 CoV-2 (Supplementary Fig. 1). However, it is not known whether SARS-CoV-2 interacts

78 with a variety of CLRs.

79 Here, we demonstrate that many different CLRs directly bind in a glycan-dependent manner 80 to the S glycoprotein of SARS-CoV-2 with picomolar affinities. Binding of DC-SIGN can trigger the internalization of S in 3T3-DC-SIGN+ cells, which implies the potential 81 82 involvement in viral entry. Furthermore, we dissect the N- and O-glycan sequences on the 83 recombinant SARS-CoV-2 S, and identify glycan features that are crucial for interactions 84 with these CLRs. The analyses of open accessible single-cell RNA sequencing data confirm 85 that various human tissues and their resident immune cells differentially express CLRs, 86 including MR, MGL and DC-SIGN in bronchoalveolar macrophages in patients with SARS-87 CoV-2. This is in direct contrast to the absence of ACE2 expression within the same cell types across the tissues. Our study identifies new SARS-CoV-2 binding receptors expressed 88 89 on innate immune cells, particularly on macrophages and dendritic cells, which could 90 accentuate severe pathological inflammation along with cytokine release syndrome. The

- 91 results suggest potential additional routes for viral infection and new anti-viral strategies.
- 92

93 **Results:**

94 Multiple CLRs bind SARS-CoV-2 S in a glycan-dependent manner

95 Multiple CLRs including DC-SIGN, L-SIGN, MR (C-type lectin domains 4-7) and MGL

96 exhibited strong binding to the recombinant full-length S produced in human embryonic

97 kidney HEK293 cells (Fig. 1a-c & e). HEK293 cells are known to present a spectrum of

human glycosylation reflective of the kidney and other epithelial tissues²². DC-SIGN, L-

99 SIGN and MGL also bound to recombinant S1, the subunit involved in ACE2 recognition. By

100 contrast, another CLR, Dectin-2, did not bind S or S1, but bound the positive control, a yeast

101 extract (EBY-100) containing mannan-type ligands (Fig. 1d). Binding of DC-SIGN, L-SIGN,

102 MR and MGL was glycan-dependent, as it was sensitive to treatment with sequence-specific

103 glycosidases (Fig. 1f). Binding of DC-SIGN and L-SIGN was attenuated by Endoglycosidase

104 H (Endo H, oligomannose and hybrid type N-glycan-targeting) and eliminated by PNGase F

105 (N-glycan-targeting), suggesting that the two CLRs bind to S via both oligomannose and

- 106 complex N-glycans. MR binding was abolished by both Endo H and PNGase F (Fig. 1c),
- 107 suggesting that oligomannose N-glycans are the ligands. A profound reduction in MGL
- 108 binding was observed by exposure to PNGase F, indicating that MGL ligands reside

- 109 primarily on N-glycans. Sialic acid appeared to mask some of the MGL ligands as
- 110 neuraminidase (Neu) treatment slightly increased the binding (Fig. 1e), which was similar to
- 111 the effect on bovine submaxillary mucin (BSM) with abundant O-glycans comprised of
- 112 sialylated N-acetylgalactosamine (STn antigen). The effects of glycosidase treatment were
- 113 confirmed by loss or gain of binding by glycan-binding lectins GNA, ConA and VVA
- 114 (Supplementary Fig. 2a, b & d). Interestingly, neither DC-SIGN nor L-SIGN bound
- recombinant S2 (Supplementary Fig. 2e-h), the subunit mediating cell fusion. In all cases
- 116 CLR binding to S and S1 was Ca²⁺-dependent as expected (**Supplementary Fig. 2i-I**).
- 117 Taken together, our results demonstrate that DC-SIGN and L-SIGN bind the recombinant S
- 118 via high-mannose and complex N-glycans, while MR recognizes S via its high-mannose
- 119 moieties only. MGL binding can be largely attributed to N-glycans, but O-glycans could also
- 120 be partly involved in its recognition.
- 121

122 CLRs interact with the SARS-CoV-2 S with high affinity

- 123 Earlier study showed DC-SIGN and MGL at 1 µg/ml can bind the recombinant receptor
- 124 binding domain (RBD) of S by ELISA assay²³. Here, using a native-like trimeric SARS-
- 125 CoV-2 S protein, we sought to measure the binding affinities of DC-SIGN, L-SIGN, MR and
- 126 MGL, and the canonical SARS-CoV-2 entry receptor ACE2. The results indicate that the
- 127 CLRs and ACE2 all bind S in a dose-dependent manner (Fig. 1g-k). While ACE2 showed the
- highest affinity with $K_d = 4$ pM, binding of DC-SIGN, MGL and MR was strong, with $K_d =$
- 129 192, 312 and 317 pM, respectively. L-SIGN showed moderate affinity with $K_d = 986$ pM.
- 130

131 SARS-CoV-2 S glycoforms mediate interactions with CLRs

- 132 To directly characterize the nature of S glycans that interact with these CLRs, we performed
- 133 in-depth N-glycan and O-glycopeptide analyses (Fig. 2). A similar set of N-glycans,
- 134 including oligomannose- and complex-type, was detected in the recombinant full-length S,
- the S1 and S2, but the relative abundance of each individual glycan varies between samples
- 136 (Supplementary Fig. 3, Supplementary Table 1). Oligomannose N-glycans were mainly
- 137 detected in the full-length S, with the major component being Man₅GlcNAc₂, serving
- 138 potential ligand for DC-SIGN, L-SIGN, and MR^{24, 25}. Major epitopes on the complex N-
- 139 glycans were revealed by MALDI-TOF-MS/MS analysis (Supplementary Fig. 4). Most
- 140 complex N-glycans contained core Fuc, and a large proportion were neutral and terminated
- 141 with either GlcNAc or LacNAc (Gal-GlcNAc) (Fig. 2). Notably, our N-glycan microarray

- 142 analysis revealed that although certain GlcNAc-terminating N-glycans can be bound by DC-
- 143 SIGN and L-SIGN, the binding was greatly attenuated by the presence of core Fuc (#5 and #7
- 144 vs #1 and #3, **Supplementary Fig. 5** and **Supplementary Table 2**). Thus, they are unlikely
- to be the binding partners of DC-SIGN and L-SIGN. Moreover, MS/MS confirmed the
- 146 presence of Lewis A/X and LacdiNAc epitopes (GalNAc-GlcNAc) (Supplementary Fig. 4a
- 147 & b). The former was relatively high in the full-length S and the S1, potentially serving as
- 148 ligands of DC-SIGN and L-SIGN^{26, 27}. The latter was particularly abundant in S1 and S2,
- 149 potentially supporting the binding of MGL²⁸. The higher molecular-weight region is
- 150 dominated by multi-antennary N-glycans with various degrees of sialylation
- 151 (Supplementary Fig. 3), which are not known ligands for those CLRs.
- 152 In an O-glycopeptide-centered analysis of the full-length SARS-CoV-2 S, we identified four
- new O-glycosylation sites (Tyr28-Arg34, Thr678, Ser 686 and Thr1160) in addition to the
- 154 previous reported site (Thr323) in the RBD^{4, 5} (Fig. 2, Supplementary Fig. 6 and
- 155 Supplementary Table 3). All sites except Thr323 were partially occupied. Major glycan
- 156 epitopes identified on these sites include non-, mono- and disially lated core 1 (Gal β 1-
- 157 3GalNAc-R) and core 2 [GlcNAcβ1-6(Galβ1-3)GalNAc-R]. Importantly, Tn antigen
- 158 (GalNAc), which is a binding determinant for MGL, was only partially present on Thr323.
- 159 This is in line with our conclusion that MGL mainly binds N-glycans.
- 160 Among the four newly discovered O-glycosylation sites, two reside in the furin cleavage site
- 161 between S1/S2 (Thr678 and Ser686) which are unique to SARS-CoV-2. Although there has
- 162 not yet been evidence that O-glycosylation plays a role in protease cleavage of $S^{1, 29}$, further
- 163 investigation is warranted as O-glycosylation does affect protease susceptibility in other
- 164 systems, as well as antibody recognition^{30, 31}.
- 165 In summary, our glycomics, glycoproteomics analyses, and glycan microarray analysis
- 166 confirmed that the glycans on SARS-CoV-2 S could serve as ligands for DC-SIGN, L-SIGN,
- 167 MR and MGL.
- 168

169 DC-SIGN and L-SIGN on the cell surface bind SARS-CoV-2 S resulting in its

- 170 internalization
- 171 In order to investigate whether S interacts with the CLRs expressed on cell surfaces, we
- 172 performed flow cytometry using transduced fibroblast-derived 3T3 cells expressing DC-
- 173 SIGN and L-SIGN, although the latter had only a L-SIGN+ subpopulation (Supplementary
- 174 Fig. 7). The parental 3T3 cells lacked expression of DC-SIGN or L-SIGN. In accordance

- 175 with the western blot results, the full-length SARS-CoV-2 S trimer was strongly bound by
- 176 DC-SIGN+ cells (Fig. 3a & b) and to a lesser extent by L-SIGN+ cells (Fig. 3c & d). Ten
- 177 minutes after incubation, DC-SIGN+ cells presented signs of S internalization which was
- 178 significantly higher than the parental cells after 30 mins (**Fig. 3e**). Thus, our results indicate
- that SARS-CoV-2 S can be recognized and captured by cells expressing these CLRs, which
- 180 can lead to internalization of the virus.
- 181

182 CLRs bind S produced by SARS-CoV-2-infected Vero E6 cells

- 183 To further explore interactions of a native viral S protein with CLRs, we performed western
- 184 blot using lysates of SARS-CoV-2-infected Vero E6 cells (Fig. 3f-j). Twenty-four hours post
- 185 infection, SARS-CoV-2 S can be robustly detected in the cell lysates by monoclonal antibody
- 186 1A9 (Fig. 3f), which binds the recombinant full-length S but not S1 of SARS-CoV-2
- 187 (Supplementary Fig. 7e). No band was detected in the virus-containing culture supernatant
- 188 (SN), even at a higher loading amounts $(20 \times)$.
- 189 Among the CLRs, DC-SIGN and L-SIGN recognized a band with identical mobility to the
- 190 full-length S in the lysates of SARS-CoV-2-infected cells (red arrow, **Fig. 3g & h**). This was
- 191 not present in the mock-infected cells. MR also exhibited positive binding in the SARS-CoV-
- 192 2-infected cells, and in addition, in the SN (red arrows, **Fig 3i**). By contrast, MGL, although
- strongly bound to the recombinant S produced in HEK293 cells, did not appear to bind to S in
- the Vero E6 cell lysates or in the SN (**Fig. 3***j*). These results indicate that the glycosylation
- 195 status of S is influenced by the source of glycosylation, either in infected cells or the
- 196 recombinant expression system.
- 197 Taken together, our results demonstrate that SARS-CoV-2-infected Vero E6 cells produce S
- 198 protein which can be bound by DC-SIGN, L-SIGN and MR, suggesting that the virus could
- 199 be captured by host cells expressing these CLRs via their unique carbohydrate recognition.
- 200

201 CLRs are expressed on innate immune cells in tissues susceptible to SARS-CoV-2 202 infection

- 203 To characterize the distribution of DC-SIGN, L-SIGN, MR and MGL, we surveyed their
- 204 expression patterns together with ACE2 in multiple human tissues using public available
- single-cell RNA sequencing (scRNA-seq) data (Fig. 4, Supplementary Fig. 8 & 9).
- 206 Consistent with previous results³², ACE2 expression was generally low in all analyzed
- 207 datasets, including human lung and upper airway, thymus, pancreas, spleen, ileum, liver and

- 208 colon (Fig. 4a & b and Supplementary Fig. 8). In comparison, expression levels of MR and
- 209 MGL were higher, particularly in cells of the lung and upper airway (Fig. 4a). Their
- 210 expression was mainly restricted to resident immune cells, such as macrophages and dendritic
- 211 cells, which was also the major cell types producing DC-SIGN, although to a lower extent. L-
- 212 SIGN was mainly expressed in endothelial cells in liver and pancreas, in lymphatic tissues in
- 213 ileum, as well as in immune cells, but at much lower levels (Fig. 4a & b and Supplementary
- 214 **Fig. 8**).
- 215 Emerging evidence showed a strong pathological inflammation in patients with COVID-19,
- 216 correlated with the presence of monocytes, macrophages and dendritic cells^{33, 34}. Therefore,
- 217 we examined the expression of DC-SIGN, L-SIGN, MR and MGL in available dataset of
- 218 BALF cells of healthy controls (HC), and patients with moderate (M) and severe (S) COVID-
- 219 19 (3, 6 and 3 cases, respectively, **Fig. 4c** and **Supplementary Fig. 9**). Consistent with the
- 220 original report¹², unbiased clustering identified over 30 distinct cell clusters, with the majority
- of cells being macrophages (Supplementary Fig. 9a). Expression of ACE2 was mainly
- restricted to epithelial cells of severe patients (Fig. 4c). In comparison, MR was
- 223 predominantly expressed in almost all macrophages and dendritic cells from the three donor
- groups. Of note, the expression levels of DC-SIGN and MGL were increased in severe
- 225 COVID-19 patients with elevated amount of proinflammatory monocyte-derived
- 226 macrophages and inflammatory cytokines and chemokines, including IL-6, TNF, CXCL10,
- 227 CXCL8, IL-1B, CCL2 and CCL3 (Fig. 4c and Supplementary Fig. 9). The resulting
- 228 increased systemic cytokine production from activated macrophages may contribute to the
- 229 pathophysiology of severe COVID-19.
- 230 Our analyses confirm the expression of CLRs and absence of ACE2 in bronchoalveolar and
- 231 other innate immune cells, indicating that DC-SIGN, MR and MGL might serve as
- alternative receptors and entry routes in these cells for SARS-CoV-2.
- 233

Discussion:

- 235 Our results demonstrate that the SARS-CoV-2 S can engage in a glycan-dependent manner
- with multiple CLRs including DC-SIGN, L-SIGN, MR, and MGL, which are highly
- 237 expressed in innate immune cells and lymphoid organs, as confirmed by scRNA-seq analysis.
- 238 The observed interactions with picomolar affinities can initiate receptor-dependent
- 239 internalization of S as exemplified by DC-SIGN, and potentially provide routes for virus to
- 240 enter macrophages and dendritic cells. Our scRNA-seq analyses confirmed the co-expression
- 241 of the CLRs such as DC-SIGN, MR and MGL, and inflammatory cytokines and chemokines

in hyperactive macrophages and dendritic cells in patients with COVID-19. This is consistent

- 243 with the altered cytokine production in SARS-CoV-infected macrophages and dendritic cells,
- albeit lack productive viral replication $^{14, 15}$. Our results offer a possible explanation to how
- 245 SARS-CoV-2 spreads to extrapulmonary tissues within the host^{35, 36, 37}, as the innate immune
- cells lacking ACE2 expression can still interalize the virus via those CLRs.
- 247 Glycosylation of SARS-CoV-2 S is obviously complex and dependent on the nature of the
- 248 protein and the glycosylation machinery of infected host cells. Our results indicate that
- 249 glycosylation potentially determines the immune receptors with which SARS-CoV-2 interact.
- 250 This variation may lead to virus clearance or on the contrary, results in spread of the virus to
- 251 other organs, or even other hosts. Interactions of SARS-CoV-2 with CLRs and subsequent
- internalization suggests a possibility that resident innate immune cells in the lung may lessen
- the available titer of free virus by endocytosis, thus slowing the onset of symptoms and
- 254 contributing to asymptomatic or presymptomatic patients^{38, 39}. Notably, DC-SIGN and L-
- 255 SIGN can promote "trans" viral transmission, particularly exemplified in HIV-1⁴⁰. Early
- 256 studies confirmed that DC-SIGN and L-SIGN-expressing cells were able to transfer SARS-
- 257 CoV to susceptible target cells^{17, 18}. Further research is warranted to explore whether this
- 258 could occur with SARS-CoV-2. A recent proteomics study discovered strong association
- between the level of DC-SIGN and variants in the ABO locus, the glycosyltransferases
- 260 required for blood group synthesis, a known genetic risk factor for respiratory failure in
- 261 COVID-19⁴¹. Given that SARS-CoV-2 RNAemia is detected, particularly in patients with
- severe disease^{38, 42}, it is tempting to speculate that subsequent to CLR-dependent
- 263 internalization, SARS-CoV-2 could be conveyed by CLR-expressing innate immune cells,
- and redistributed to permissive tissues where more damage could occur⁴³. In accord with this
- 265 hypothesis, a recent study revealed that SARS-CoV-2 nucleocapsid can be detected in
- 266 spleens and lymph nodes⁴⁴.
- 267 The results here suggest several diagnostic and therapeutic directions. Inhibition of the CLRs
- that bind virus or inhibition of the glycan-CLR interactions by small molecules might lessen
- the distribution of virus in COVID-19 patients and potentially limit immune cell
- 270 (hyper)activation. Analysis of patients for polymorphisms in the genes encoding CLRs might
- 271 reveal associations with disease severity, as have been found for L-SIGN in SARS-CoV¹⁹.
- 272 Finally, defining the differences in glycosylation of S and the variant glycoforms might
- 273 provide insights into disease severity and spread of the virus in COVID-19 patients.
- 274

275 **References:**

275	Refei	rences:
276	1.	Hoffmann M, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
277		Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278 (2020).
278	2.	Monteil V, et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues
279		Using Clinical-Grade Soluble Human ACE2. Cell 181, 905-913.e907 (2020).
280	3.	Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage
281		for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562-569
282		(2020).
283	4.	Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N- and O-
284		glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2.
285		<i>Glycobiology</i> , 2020.2004.2001.020966 (2020).
286	5.	Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan
287		analysis of the SARS-CoV-2 spike. Science, 2020.2003.2026.010322 (2020).
288	6.	Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell
289		Death Immunity. Front Immunol 11, 251 (2020).
290	7.	van Kooyk Y. C-type lectins on dendritic cells: key modulators for the induction of
291		immune responses. Biochem Soc Trans 36, 1478-1481 (2008).
292	8.	van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and
293		adaptive immune responses. Nat Immunol 9, 593-601 (2008).
294	9.	Routhu NK, et al. Glycosylation of Zika Virus is Important in Host-Virus Interaction
295		and Pathogenic Potential. International journal of molecular sciences 20, 5206
296		(2019).
297	10.	Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TBH.
298		Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity
299		to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. <i>Nature Immunology</i>
300		10 , 1081-1088 (2009).
301	11.	Guan W-j, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New
302		England Journal of Medicine 382 , 1708-1720 (2020).
303	12.	Liao M, et al. Single-cell landscape of bronchoalveolar immune cells in patients with
304		COVID-19. Nature Medicine, (2020).
305	13.	Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S-Y. Pulmonary Pathology of Early-Phase
306		2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer.
307		Journal of Thoracic Oncology 15, 700-704 (2020).
308	14.	Law HKW, et al. Chemokine up-regulation in SARS-coronavirus-infected,
309		monocyte-derived human dendritic cells. <i>Blood</i> 106 , 2366-2374 (2005).
310	15.	Tseng C-TK, Perrone LA, Zhu H, Makino S, Peters CJ. Severe Acute Respiratory
311		Syndrome and the Innate Immune Responses: Modulation of Effector Cell Function
312		without Productive Infection. <i>The Journal of Immunology</i> 174 , 7977-7985 (2005).
313	16.	Jeffers SA, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory
314		syndrome coronavirus. Proceedings of the National Academy of Sciences of the
315		United States of America 101 , 15748-15753 (2004).

316	17.	Marzi A, et al. DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg
317		Virus and the S Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal
318		<i>of Virology</i> 78 , 12090-12095 (2004).
319	18.	Yang Z-Y, et al. pH-Dependent Entry of Severe Acute Respiratory Syndrome
320		Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell
321		Transfer through DC-SIGN. Journal of Virology 78, 5642-5650 (2004).
322	19.	Chan VSF, et al. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS
323		coronavirus infection. Nature Genetics 38, 38-46 (2006).
324	20.	Shih Y-P, et al. Identifying Epitopes Responsible for Neutralizing Antibody and DC-
325		SIGN Binding on the Spike Glycoprotein of the Severe Acute Respiratory Syndrome
326		Coronavirus. Journal of Virology 80, 10315-10324 (2006).
327	21.	Han DP, Lohani M, Cho MW. Specific Asparagine-Linked Glycosylation Sites Are
328		Critical for DC-SIGN- and L-SIGN-Mediated Severe Acute Respiratory Syndrome
329		Coronavirus Entry. Journal of Virology 81, 12029-12039 (2007).
330	22.	Goh JB, Ng SK. Impact of host cell line choice on glycan profile. Crit Rev Biotechnol
331		38 , 851-867 (2018).
332	23.	Chiodo F, et al. Novel ACE2-Independent Carbohydrate-Binding of SARS-CoV-2
333		Spike Protein to Host Lectins and Lung Microbiota. <i>bioRxiv</i> , 2020.2005.2013.092478
334		(2020).
335	24.	Guo Y, et al. Structural basis for distinct ligand-binding and targeting properties of
336		the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11, 591-598 (2004).
337	25.	Martinez-Pomares L. The mannose receptor. Journal of Leukocyte Biology 92, 1177-
338		1186 (2012).
339	26.	Feinberg H, Mitchell DA, Drickamer K, Weis WI. Structural Basis for Selective
340		Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163-
341		2166 (2001).
342	27.	Noll AJ, et al. Human DC-SIGN Binds Specific Human Milk Glycans. Biochemical
343		Journal, (2016).
344	28.	Mortezai N, et al. Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-
345		type lectin CLEC10A (CD301, MGL). Glycobiology 23, 844-852 (2013).
346	29.	Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure,
347		Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-
348		292.e286 (2020).
349	30.	de las Rivas M, et al. Molecular basis for fibroblast growth factor 23 O-glycosylation
350		by GalNAc-T3. Nature Chemical Biology 16, 351-360 (2020).
351	31.	Silver ZA, et al. Discovery of O-Linked Carbohydrate on HIV-1 Envelope and Its
352		Role in Shielding against One Category of Broadly Neutralizing Antibodies. Cell
353		<i>Reports</i> 30 , 1862-1869.e1864 (2020).
354	32.	Sungnak W, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial
355		cells together with innate immune genes. Nature Medicine 26, 681-687 (2020).

356	33.	Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key
357	55.	role for monocytes and macrophages. <i>Nature Reviews Immunology</i> 20 , 355-362
358		(2020).
359	34.	Vabret N, <i>et al.</i> Immunology of COVID-19: current state of the science. <i>Immunity</i> ,
360	54.	(2020).
361	35.	Wang W, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens.
362	55.	<i>JAMA</i> 323 , 1843-1844 (2020).
363	36.	Wu Y, <i>et al.</i> Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. <i>The</i>
363 364	50.	Lancet Gastroenterology & Hepatology 5, 434-435 (2020).
365	37.	Lamers MM, <i>et al.</i> SARS-CoV-2 productively infects human gut enterocytes.
365	57.	Science, eabc1669 (2020).
	20	
367	38.	Huang C, <i>et al.</i> Clinical features of patients infected with 2019 novel coronavirus in
368	20	Wuhan, China. <i>The Lancet</i> 395 , 497-506 (2020).
369	39.	Arons MM, <i>et al.</i> Presymptomatic SARS-CoV-2 Infections and Transmission in a
370	40	Skilled Nursing Facility. <i>New England Journal of Medicine</i> 382 , 2081-2090 (2020).
371	40.	Geijtenbeek TBH, <i>et al.</i> DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein
372	4.1	that Enhances trans-Infection of T Cells. <i>Cell</i> 100 , 587-597 (2000).
373	41.	Brufsky A, Lotze MT. DC/L-SIGNs of Hope in the COVID-19 Pandemic. <i>Journal of</i>
374	40	Medical Virology n/a.
375	42.	Hogan CA, <i>et al.</i> High frequency of SARS-CoV-2 RNAemia and association with
376	40	severe disease. <i>medRxiv</i> , 2020.2004.2026.20080101 (2020).
377	43.	Li H, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. The Lancet
378		395 , 1517-1520 (2020).
379	44.	chen y, et al. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
380		CoV-2) Directly Decimates Human Spleens and Lymph Nodes. <i>medRxiv</i> ,
381		2020.2003.2027.20045427 (2020).
382	45.	Wu L, Martin TD, Vazeux R, Unutmaz D, KewalRamani VN. Functional Evaluation
383		of DC-SIGN Monoclonal Antibodies Reveals DC-SIGN Interactions with ICAM-3
384		Do Not Promote Human Immunodeficiency Virus Type 1 Transmission. Journal of
385		<i>virology</i> 76 , 5905-5914 (2002).
386	46.	Matsumoto Y, et al. Identification of Tn antigen O-GalNAc-expressing glycoproteins
387		in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology 30,
388		282-300 (2019).
389	47.	Gao C, et al. Unique Binding Specificities of Proteins toward Isomeric Asparagine-
390		Linked Glycans. <i>Cell chemical biology</i> 26 , 535-547 e534 (2019).
391	48.	Jia N, et al. The Human Lung Glycome Reveals Novel Glycan Ligands for Influenza
392		A Virus. Scientific Reports 10, 5320 (2020).
393	49.	Plomp R, et al. Site-Specific N-Glycosylation Analysis of Human Immunoglobulin E.
394		Journal of proteome research 13, 536-546 (2014).
395	50.	Deprez M, et al. A single-cell atlas of the human healthy airways. bioRxiv,
396		2019.2012.2021.884759 (2019).

397	51.	Vieira Braga FA, et al. A cellular census of human lungs identifies novel cell states in
398		health and in asthma. Nature Medicine 25, 1153-1163 (2019).
399	52.	Martin JC, et al. Single-Cell Analysis of Crohn's Disease Lesions Identifies
400		a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell
401		178 , 1493-1508.e1420 (2019).
402	53.	Smillie CS, et al. Intra- and Inter-cellular Rewiring of the Human Colon during
403		Ulcerative Colitis. Cell 178, 714-730.e722 (2019).
404	54.	Baron M, et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas
405		Reveals Inter- and Intra-cell Population Structure. Cell Systems 3, 346-360.e344
406		(2016).
407	55.	Madissoon E, et al. scRNA-seq assessment of the human lung, spleen, and esophagus
408		tissue stability after cold preservation. Genome Biology 21, 1 (2019).
409	56.	Park J-E, et al. A cell atlas of human thymic development defines T cell repertoire
410		formation. Science 367, eaay3224 (2020).
411	57.	Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data
412		analysis. <i>Genome Biol</i> 19 , 15 (2018).
413	58.	Stuart T, et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902
414		e1821 (2019).
415	59.	Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
416		transcriptomic data across different conditions, technologies, and species. Nat
417		<i>Biotechnol</i> 36 , 411-420 (2018).
418		
419		
420		

421

Fig. 1. Binding of CLRs to the recombinant SARS-CoV-2 S. (a-e) Immunoblots with
human Fc-fused CLRs DC-SIGN (a), L-SIGN (b), MR (c), Dectin-2 (d) and MGL (e) to
detect recombinant S1 and S after mock enzymatic digestion or with Endo H, PNGase F or
Neu digestion. As negative controls, these glycosidases were also included in some assays.
EBY-100 represents the lysates of yeast strain EBY-100. BSM is the recombinant bovine
submaxillary mucin. In all assays 5 mM Ca²⁺ was included in solutions of CLRs. (f)

428 Schematic presentation of the cleavage sites of Endo H, PNGase F and Neu on N- and O-

- 429 glycans. Endo H cleaves the oligomannose and hybrid N-glycans, while PNGase F removes
- 430 all N-glycans including the complex type. Neu removes all sialic acids on N- or O-glycans.
- 431 (g-k) Affinity constant measurement for DC-SIGN (g), L-SIGN (h), MR (i), MGL (j) and
- 432 ACE2 (k) by ELISA assay. The plates were coated by recombinant SARS-CoV-2 S trimer.
- 433 Error bars represent SD of two replicates. The data were plotted as % binding relative to the
- 434 saturated binding as 100%. In all assays 5 mM Ca²⁺ and Tween-20 were included in solutions
- d35 of CLRs.
- 436

438

439

440 Fig. 2. Major N-glycans and O-glycopeptides identified in the recombinant full-length

SARS-CoV-2 S. Schematic representation of SARS-CoV-2 S shown in the middle. The 441 442 positions of N-glycosylation sites are shown on top. Protein domains in the illustration are: 443 N-terminal domain (NTD), receptor-binding domain (RBD), fusion peptide (FP), heptad 444 repeat 1 (HR1), central helix (CH), connector domain (CD), and transmembrane domain (TM). The cleavage sites of S1/S2 and S2' are labelled. Major N-glycan structures detected 445 446 by mass spectrometry were categorized by their epitopes on the non-reducing terminal and shown on top. Cartoon symbols above a curly parenthesis indicates sequences corresponding 447 448 to these compositions cannot be unequivocally defined. The structures presented are only the 449 major glycans on the recombinant full-length S, S1, and S2. A full list of glycans can be found in Supplementary Table 1. The O-glycopeptides detected in the full-length S protein 450 are presented at the bottom. The identified O-glycosylation sites are marked on the protein 451 452 and the O-glycans on each specific site are listed below each site. The LC-MS/MS spectrum 453 of each O-glycopeptide can be found in Supplementary Fig. 6. Labelled with asterisk were those found only after neuraminidase treatment. 454

457	
458	Fig. 3. Binding analysis of cells expressing DC-SIGN and L-SIGN and Vero E6 cells
459	infected by SARS-CoV-2. (a and c) Flow cytometry profiles showing the binding of the full-
460	length SARS-CoV-2 S trimer to parental 3T3 cells (middle), and 3T3-DC-SIGN+ and 3T3-L-
461	SIGN+ cells (bottom). (b and d) Increased binding of SARS-CoV-2 S trimer to the parental
462	3T3 cells, the 3T3-DC-SIGN+ and 3T3-L-SIGN+ cells relative to the secondary antibody
463	control. Data presented here is the percentage of increase in geometric mean fluorescence
464	intensity (gMFI). (e) Internalization of SARS-CoV-2 S trimer in 3T3-DC-SIGN+ cells
465	compared to the parental 3T3 cells at 10 and 30 min. (f-j) Immunoblots with anti-S mAb 1A9
466	(f), human Fc-fused CLRs DC-SIGN (g), L-SIGN (h), MR (i), and MGL(j) using lysates of
467	Vero E6 cells mock infected (lane 1) or SARS-CoV-2 infected (lane 2), and the SARS-CoV-
468	2-containing culture supernatant (2X and 20X in lane 3 and 4, respectively). Red arrow
469	indicates the bands corresponding to the SARS-CoV-2 S. In all assays 5 mM Ca ²⁺ was
470	included in solutions of CLRs. The recombinant SARS-CoV-2 S was used as a positive
471	control.
472	

473 474

475 Fig. 4. Expression of CLRs in human tissues and CLRs/cytokines/chemokines in BALF

476 **from COVID-19 patients**. (**a** and **b**) Single-cell transcriptomic analysis of CLRs gene

477 expression (DC-SIGN, L-SIGN, MR, MGL) and ACE2 in lung and upper airway and thymus

- 478 as indicated. NK, natural killer cells; DN, double-negative T cells; DP, double-positive T
- 479 cells; ETP, early thymic progenitor; Endo, endothelial cells; Ery, erythrocytes; Fb,

- 480 fibroblasts; Mono, monocyte; Mac, macrophage; Mgk, megakaryocyte; NMP, neutrophil-
- 481 myeloid progenitor; SP, single-positive T cells; VSMC, vascular smooth muscle cells; TEC,
- 482 thymic epithelial cells). (c) UMAP showing the gene expression levels of CLRs gene
- 483 expression (DC-SIGN, L-SIGN, MR, MGL) and ACE2, and selected cytokines and
- 484 chemokines in BALF immune cells from health controls (HC, n = 3), moderate cases (M, n =
- 485 3) and severe/critical cases (S, n = 6).
- 486
- 487

488 Methods:

489 **Recombinant proteins**

- 490 Recombinant S1 (His-tag), S2 (His-tag), full-length S protein (with mutations R683A and
- 491 R685A, His-tag), S protein trimer (with mutations R683A and R685A, His-tag), human
- 492 ACE2 (Fc-tag) were all purchased from Acrobiosystems (S1N-C52H3, S2N-C52H5, SPN-
- 493 C52H4, SPN-C52H8, AC2-H5257, respectively). The trimeric conformation of the full-
- 494 length S protein was validated by the vender using size exclusion chromatography under
- 495 detection with multi angle light scattering. Human DC-SIGN (Fc-tag), DC-SIGNR (Fc-tag),
- 496 MGL (Fc-tag) were purchased from Sino Biological (10200-H01H, 10559-H01H, 10821-
- 497 H01H, respectively). Anti-Spike protein antibody (1A9), which was a mouse monoclonal
- 498 antibody (IgG1) detecting the spike proteins of both SARS-CoV and SARS-CoV-2 through
- 499 S2 subunit, was purchased from GeneTex (GTX632604).
- 500 Human IgG Fc-tagged MR (MR-Fc), containing the murine C-type lectin domains 4-7 fused
- to a human IgG Fc-portion, was produced in house. HEK293T cells were transfected with
- 502 MR-Fc DNA (kind gift from L. Martinez Pomares). Transfection was performed with
- 503 Lipofectamine LTX with Plus Reagent (Thermo Fisher Scientific) conform with the
- 504 manufacturer's guidelines. The cells were incubated with Lipofectamine complex at 37°C in
- a CO₂ incubator for 24 h, and the medium refreshed after 24 h. After 9 days the supernatant
- 506 containing the produced MR-Fc was collected and purified. MR-Fc was purified from cell
- 507 culture supernatant using Protein A-agarose beads (Roche). For ELISA experiments, the MR-
- 508 Fc was purified over mannan-agarose beads (Sigma) and protein A-agarose beads. MR-Fc
- 509 was quantified by Nanodrop (Thermo Fisher Scientific) and stored at -20°C until further use.
- 510

511 Cell culture

- 512 Human fibroblast cell line 3T3, and the DC-SIGN-, and L-SIGN-transduced 3T3 cells (3T3-
- 513 DC-SIGN+ and 3T3-DC-SIGNR+, respectively) were obtained through the AIDS Reagent
- 514 Program, Division of AIDS, NIAID, NIH from Drs. Thomas D. Martin and Vineet N.
- 515 KewalRamani, HIV Drug Resistance Program, NCI⁴⁵. They were cultured in Dulbecco's
- 516 Modified Eagle's Medium (DMEM) supplemented with 10% (vol/vol) fetal bovine serum
- 517 (FBS), 1% penicillin-streptomycin and 2 mM glutamine at 37°C in 5% CO₂. Vero E6 cells
- 518 (ATCC CRL-1586) were cultured in DMEM supplemented with 2 mM L-glutamine, 50
- 519 units/ml penicillin, 50 mg/ml streptomycin, and 10% FBS. Infection studies were performed
- 520 in cell culture medium supplemented with 2% FBS.

521 The Saccharomyces strain EBY-100 was purchased from ATCC and cultured under the

522 recommended condition by the vendor. The EBY-100 cell extracts were prepared with the

523 lysis buffer (20 mM Tris, 100 mM NaCl, 1 mM EDTA, 2% Triton X-100, 1% SDS, pH 7.6).

524 The protein concentration was quantified by Pierce[™] BCA Protein Assay Kit (Thermo Fisher

- 525 Scientific).
- 526

527 Preparation of SARS-CoV-2

528 All work with infectious SARS-CoV-2, isolate USA_WA1/2020 was performed at the

529 National Emerging Infectious Diseases Laboratories, Boston University under Biosafety

530 Level 4. Vero E6 cells seeded in 6-well plates were infected with SARS-CoV-2 at a

531 multiplicity of infection (MOI) of 1 or mock infected. After 1 h of virus adsorption at 37°C in

532 5% CO₂, the inocula were removed and replaced with DMEM supplemented with 2% FBS.

533 Twenty-four hours post-infection, cell supernatants were removed, the cells were scraped and

pelleted by low-speed centrifugation. Cell pellets were washed once with PBS and

535 resuspended in 270 μl Cell Extraction Buffer (Thermo Fisher Scientific). A 900 μl aliquot of

536 a SARS-CoV-2 stock (Titer: 1.58×10^7 TCID₅₀ units/ml) was also used for analysis. Both the

cell lysates and the viral stock were inactivated by addition of SDS (1 % final concentration)

and boiling for 10 minutes prior to removal from the Biosafety Level 4 facility. The

539 inactivated cell lysates and virus stock were aliquoted and stored at -80°C until further use.

540 The protein concentration was quantified by Pierce[™] BCA Protein Assay Kit (Thermo Fisher

541 Scientific).

542

543 Western Blot and Lectin Blot

544 The recombinant S, S1 and S2 proteins, together with controls were subject to enzymatic

545 digestion by PNGase F (P0708L, New England Biolabs), Endo H (P0702L, New England

546 Biolabs), neuraminidase (10269611001, Roche) or mock treatment before loading onto the

547 SDS-PAGE gel. The enzymatic digestion was following the protocols recommended by the

548 venders. Recombinant S, S1 and S2 protein and BSM were used at 1µg/lane, while the EBY-

549 100 extract was used at 15 μ g/lane. The reaction mixture was directly loaded on the 4-20%

550 SDS-PAGE gel (GenScript) following addition of 4× laemmli loading buffer. The cell

551 extracts either from SARS-CoV-2 infected or mock infected Vero E6 cells (both at 50 μg

- protein/lane), together with the culture supernatant (at 12 μ g (2×) and 120 μ g (20×)
- 553 protein/lane), were loaded on the SDS-PAGE gel following addition of 4× laemmli loading

- buffer and 10 min heating. The gels were either stained with Coomassie Brilliant Blue or
- 555 Colloidal Blue (both from Thermo Fisher Scientific) to visualize the proteins, or transferred
- to a PVDF membrane (Thermo Fisher Scientific) for Western blots.
- 557

558 The Western blot and lectin blot analysis were performed following the protocols published

- 559 previously⁴⁶. The proteins were under the following concentrations: DC-SIGN, L-SIGN,
- 560 Dectin-2, MGL all at 1 µg/ml, MR at 2.5 µg/ml, biotinylated plant lectins GNA and VVA
- both at 1 μg/ml, Con A at 0.1 μg/ml, or antibodies mAb100 at 1 μg/ml and anti-spike
- 562 antibody 1A9 at 0.5 μg/ml. The CLRs were prepared either in BSA-TTBS buffer [1% BSA in
- 563 20 mM Tris, 300 mM NaCl, 5 mM CaCl₂, 2 mM MgCl₂, pH 7.4, with 0.05% Tween-20] or
- 564 BSA-TTBS-EDTA [1% BSA in 20 mM Tris, 300 mM NaCl, 10 mM EDTA, pH 7.4) with
- 565 0.05% Tween-20 (TTBS)] to check the calcium dependence. HRP-labelled secondary
- 566 reagents including goat anti-human IgG-HRP, goat anti-mouse IgG-HRP (Jackson
- 567 ImmunoResearch Laboratories) or streptavidin-HRP (Vector Laboratories) are all used in
- 568 1:10,000 dilution.
- 569

570 ELISA

- 571 The ELISA assay was performed following the protocols published previously⁴⁶. The S-
- 572 protein trimer was immobilized in a 96-well plate (0.2 μg/well) overnight at 4°C. The
- 573 proteins were serial diluted (1:2) and applied to each well. HRP-labeled goat anti-human IgG
- 574 was used at 1:1,000 dilution and the color development was with TMB ELISA Substrate
- 575 (Abcam, ab171523) The experiment was performed in duplicate and the background
- 576 subtraction was done by subtracting the corresponding binding signals obtained with BSA-
- 577 immobilized wells. Affinity constant was calculated with GraphPad Prism 6.0 (GraphPad
- 578 Software, Inc.).
- 579

580 Flow cytometry

581 For cell surface binding assay, the cultured 3T3, 3T3-DC-SIGN and 3T3-L-SIGN cells were

- 582 collected and washed with cold PBS once. The cells were incubated with full-length S protein
- trimer (20 μg/ml) or the monoclonal antibody against DC-SIGN, #120507 (2 μg/ml) and L-
- 584 SIGN, #120604 (2 µg/ml), or buffer only (negative control) on ice for 30 minutes. Binding of
- the full-length S protein was detected by mouse anti-His IgG (Invitrogen MA121315, 2
- 586 μg/ml) and Alexa Fluor-488-labelled goat anti-mouse IgG (Invitrogen A11001, 1:500).

587 Binding of anti-DC-SIGN and anti-L-SIGN were detected directly with Alexa Fluor 488-

588 labelled goat anti-mouse IgG. The results shown were from three independent experiments

- analyzed by FlowJo software.
- 590

591 Internalization assay

592 To measure internalization, the cells were suspended and incubated with S protein trimer on

- 593 ice as stated above. The cells were then centrifuged and fixed in 0.5% paraformaldehyde (T0)
- in binding buffer or allowed for further incubation at 37 °C for 10 or 30 min (Tn) and ended
- 595 with 0.5% paraformaldehyde. Fixed cells were stained with mouse anti-His IgG and Alexa
- 596 Fluor-488-labelled goat anti-mouse IgG as indicated above for residual S trimer detection.
- 597 Internalization rate (%) was calculated by the formula: [gMFI of S trimer(T0)-gMFI of S
- 598 trimer (Tn)]/gMFI of S trimer (T0) \times 100. The results shown were from five independent
- 599 experiments with comparable results.
- 600

601 Microarray analysis

- 602 Microarray analyses on the complex N-glycan array were conducted as reported previously⁴⁷.
- 603 The microarray slides were probed with Fc-tagged DC-SIGN and L-SIGN at 10 μg/ml
- diluted in 1% BSA (TSM with 0.05% Tween) and binding was detected with Alexa Fluor 488
- 605 labelled goat anti-human IgG (H+L) (Invitrogen) at 5 μg/ml.
- 606

607 Glycomics analysis

608 The full length S, S1 and S2 proteins were subjected to N-glycomics analysis following the

609 protocols published previously⁴⁸ with some modifications. Briefly, 20 μg each of the

- 610 recombinant proteins were lyophilized and digested with PNGase F (P0701S, New England
- Biolabs Inc.) according to the manufacture's instruction. Post digestion, the glycans were
- 612 purified by Sep-Pak C18 cartridges (WAT054955, Waters Corp.) and subjected to
- 613 permethylation. The permethylated glycans were purified by chloroform extraction and Sep-
- 614 Pak C18 cartridges prior to mass spectrometric analysis.
- 615 MALDI-TOF MS and MALDI-TOF/TOF MS/MS analysis of the permethylated glycans
- 616 were performed with the UltrafleXreme mass spectrometer (Bruker Corp.) equipped with a
- 617 Smartbeam II laser. Spectrum between mass-to-charge (m/z) 1000 and 5500 was acquired

under reflectron positive mode. Selective peaks were subject to MS/MS analysis. Each MS
spectrum presented an accumulation of 20,000 laser shots.

620

621 O-glycan LC-MS analysis

622 Three microgram of full-length S protein were treated with PNGase F (NEB) for N-glycan

623 release according to the manufacture's instruction, followed by optional sialic acid removal

624 using 0.02 U sialidase (Roche), prior to in-gel trypsin treatment⁴⁹. After overnight trypsin

625 treatment an optional AspN (Roche) digestion was performed in 1:25 ratio (enzyme:protein).

626 The samples were dried down in a speed vac concentrator, reconstituted in Cal and further

627 diluted in 0.1 % FA for subsequent LC-MS analysis. All samples were prepared in triplicates.

628 LC-MS was performed using an Ultimate 3000 nano LC coupled to an Orbitrap Fusion

629 Lumos mass spectrometer (both from Thermo Fisher). Three microliters of each sample were

630 loaded onto a C18 precolumn (C18 PepMap 100, 300 μm x 5 mm, 5 μm, 100 Å, Thermo

Fisher Scientific) with 15 μ L/min solvent A (0.1% FA in H₂O) for 3 min and separated on a

632 C18 analytical column (picofrit 75 μm ID x 150 mm, 3 μm, New Objective) using a linear

633 gradient of 2 % to 45 % solvent B (80% acetonitrile, 0.1% FA) over 106 min at 400 nL/min.

634 The ion source was set at 2100 V spray voltage and 200 °C ion transfer tube temperature. MS

635 scans were performed in the orbitrap at a resolution of 60000 within a scan range of m/z 600

-m/z 1600, a RF lens of 30%, AGC target of 1e5 for a maximum injection time of 50 ms.

637 The top 15 precursors were selected for MS2 in a data dependent manner, within a mass

for range of m/z 600 - 1600 and a minimum intensity threshold of 5e4 and an isolation width of

639 1.5 m/z. HCD was performed at 27 % collision energy and detected in the orbitrap with a

resolution of 30000 with the first mass at m/z 120, an AGC target of 2e5 and a maximum

641 injection of 250 ms.

642 EThcD spectra were acquired in a product ion-dependent manner ([HexNAc+H]⁺-ion) based

on the method above. Precursor isolation width was set to 1.2 *m/z*. Calibrated charge-

644 dependent ETD parameters were used with supplemental activation collision energy of 25%,

an AGC target of 2e5 and a maximum injection time of 350 ms.

646 Glycopeptide identification was performed using Byonic version 3.5 (Protein Metrics Inc.).

647 Trypsin and/or AspN were set as proteases with a maximum of two missed cleavage sites.

648 Mass tolerance for the precursor and HCD fragments was 10 ppm and for EThcD 20 ppm.

649 The glycan database was "O-glycan 78 mammalian". The following modifications were

allowed: carbamidomethyl (Cys; fixed), oxidation (Met; variable common 2), pyroglutamine

- on N-term (Gln, variable, rare 1), acetylation N-term (variable rare1), deamidation (Asn,
- variable common 2), formylation N-term (variable rare1). Glycopeptides with a score above
- 653 250 were selected and further manually inspected.
- 654

655 scRNA-sequencing

- 656 For the expression of ACE2 and receptor genes across different tissues, datasets were
- 657 retrieved from published datasets in multiple human tissues, including lung and upper
- 658 airway^{50, 51}, ileum⁵², colon⁵³, pancreas⁵⁴, spleen⁵⁵ and thymus⁵⁶. These datasets are available
- and can be visualized and assessed through a website portal $(www.covid19cellatlas.org)^{32}$.
- The processed .h5ad files were loaded by "read_h5ad" and violin plots were illustrated by
- ⁶⁶¹ "pl.stacked_violin" in scanpy 1.5.1, which is a model for single cell analysis in Python⁵⁷. For
- the single-cell RNA sequencing analysis of bronchoalveolar immune cells in patients with
- 663 SARS-CoV-2, dataset was retrieved from Liao et al.¹² and Gene Expression Omnibus (GEO)
- under the accession number GSE145926, which contains 6 severe and 3 moderate SARS-
- 665 CoV-2 patients and 3 healthy controls¹².
- 666 The raw data with .h5 format was loaded for analysis through R package Seurat v3^{58, 59}. For
- each sample, cells were filtered out if they contain genes less than 200 or more than 6000, or
- if their UMI is less than 1000, or mitochondrial gene percentage larger than 0.1. The
- remaining cells were integrated into a gene-barcode matrix and then normalized and log-
- transformed. We identified 2000 highly variable genes by 'vst' method for the downstream
- 671 PCA analysis. RNA count and the percent of mitochondrial genes were regressed out in the
- 672 scaling step. We chose the top 50 principal components for the UMAP and graph-based
- 673 clustering. The cell type identity was referred to Liao et al.¹² and feature genes were
- 674 demonstrated by "DimPlot".
- 675

676 Data availability

- All data is available in the manuscript or in the supplementary information. The single cellRNA-sequencing datasets are available online with the corresponding references.
- 679
- 680

681 Acknowledgments:

- This work was supported by National Institutes of Health grants P41GM103694 and R24
- 683 GM137763, and Evergrande MassCPR subaward 280870.5116795.0025 to E.M., as well as
- an NIH supported (1UL1TR001430) COVID-19 Related Research Award from the Boston
- 685 University Clinical and Translational Science Institute (CTSI) to A.E., SARS-CoV-2 isolate
- 686 USA_WA1/2020 was kindly provided by CDC's Principal Investigator Natalie Thornburg,
- 687 <u>nax3@cdc.gov</u>, and the World Reference Center for Emerging Viruses and Arboviruses
- 688 (WRCEVA). The following reagent was obtained through the NIH AIDS Reagent Program,
- 689 Division of AIDS, NIAID, NIH: NIH 3T3, NIH 3T3-DC-SIGN+ and NIH 3T3-L-SIGN+
- 690 from Drs. Thomas D. Martin and Vineet N. KewalRamani. We thank Dr. Jamie Heimburg-
- 691 Molinaro for help in editing the manuscript.
- 692

693 Author contributions:

- 694 C.G. and R.D.C. conceived the project. C.G. and Y.M. performed the western blots and
- 695 ELISA. N.J. and K.S. performed N-glycomics and O-glycoproteomics analysis. J.Z.
- 696 maintained the cell culture and performed cell binding assays and internalization assay. C.G.
- 697 performed glycan microarray analysis. H.Z. and J.L. performed scRNA-seq analysis. A.J.H.,
- 698 E.M., I.D. and J.K. provided important materials for the experiments. K.T., A.E. and R.D.C.
- 699 supervised experiments. C.G. wrote the first draft of the manuscript and all authors
- 700 contributed to the final version.
- 701

702 Competing interest declaration:

- The authors declare no competing interests.
- 704

705 Additional information:

- 706 Supplementary Information is available for this paper.
- * Correspondence and requests for materials should be addressed to: Richard D. Cummings,
- 708 Ph.D., Director, National Center for Functional Glycomics, Department of Surgery, Beth
- 709 Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 3 Blackfan Circle,
- 710 Boston, MA 02115, Tel: 1-617-735-4643, rcummin1@bidmc.harvard.edu
- 711

712 Supplementary Information:

- 713 Supplementary Figures 1-9
- 714 Supplementary Tables 1-3 (in separate excel files)

715